

AMADEUS

Advanced MAterials by DEsign

Inserm U1026

Tissue Bioengineering

PERMANENT STAFF

→ Nine permanent researchers and 5 engineers are involved in AMADEus-relevant projects

Joëlle Amédée Senior Res. Team leader

Laurence Bordenave Res Prof.

Olivier Chassande Junior res.

Fabien Guillemot Junior Res.

Jean Christophe Fricain

Res. prof.

Damien Le Nihouannen Ass. Prof.

MOBILIZED COMPETENCES

- Tissue engineering
- + Biomaterial science + Laser assisted bioprinting
- + Human stem cell biology sciences
- + Cell / biomaterial interfaces
- + Experimental models (tissue /biomaterial interfaces and bioimaging

- Bone and vascular tissue engineering
- Human adult stem cell cultures and their cell biology
- Laser interactions with biomaterials and biological tissues / biofabrication
- Local micro-environments modifications through laser interaction (mechanical and biochemical gradients)
- Cell interfaces with 2D functionalized surfaces
- Cell fate within a 3D (functionalized) scaffold (polymer, composite biomaterials...)
- Mechanical stress (flow chambers, bioreactor)
- Host tissue / tissue engineered constructs Preclinical models and bioimaging

MAIN FACILITIES

- Conventional facilities for human stem cell cultures and characterization (cell and molecular biology)
- Flow cytometry and confocal microscopy
- 2 workstations dedicated to Laser Assisted BioprintingSpecific
- Facilities for biomaterial characterization (SEM, profilometry...)
- Facilities for experimental models, surgery and bio-imaging.

CURRENT AND FUTURE PROJECTS WITHIN AMADEus FRAMEWORK

- Design and produce appropriate biocompatible and bioresorbable materials
- Understand the interaction between material surface and stem cells by integration of a set of skills and tools, such as targeting and signaling components.
- Create local mechanical and biochemical environments able to drive stem cell differentiation.
- Biofabrication on demand of 3D complex tissues and organs.
- Multifunctional large micro/nanopatterned matrices for tissue reconstruction
- Evaluate in vivo these tissue-engineered constructs using animal models for bone and vascular reconstruction, with the know-how of the technology transfert unit: CIC-IT Biomaterials.

